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A viscous thread falling onto a steadily moving horizontal belt shows a surprisingly
complex range of behaviour in experiments. Low belt speeds produce coiling, as
might be expected from the behaviour of a thread falling onto a stationary surface.
High belt speeds produce a steady thread, whose shape is predicted well by theory
developed to describe a stretching viscous catenary with surface tension and inertia.
Intermediate belt speeds show several novel modes of oscillation, which lay down
a wide variety of patterns on the belt. The patterns include meanders, side kicks,
slanted loops, braiding, figures-of-eight, Ws, and also period-doubled versions of
figures-of-eight, meanders and coiling. The experimental boundary between steady and
unsteady behaviour occurs at a slightly lower belt speed than the loss of the steady
solution for a stretching catenary.

1. Introduction
The buckling instability that results from competition between axial compression

and lateral bending is a well-known phenomenon in the mechanical behaviour of solid
beams and shells. Viscous threads and sheets also undergo a buckling instability, as
may be simply demonstrated with honey or syrup poured onto toast from a sufficient
height. A thread of honey undergoes a helical motion about the vertical, sometimes
referred to as the ‘fluid rope-coil’ effect, and a sheet of honey folds back and forth
periodically.

Coiling of a viscous thread has been extensively studied (e.g. Barnes & Woodcock
1958; Barnes & MacKenzie 1959; Cruickshank & Munson 1983; Griffiths & Turner
1988). Taylor (1969) perceived that axial compression was necessary for the buckling
to occur. Mahadevan, Ryu & Samuel (1998, 2000) identified an inertia-dominated
case in which centripetal torques balance bending stresses in the coil and showed
that the consequent scaling law for the coiling frequency agreed with experiments.
Ribe (2004) used a numerical approach to calculate steady coiling solutions over
a large frequency range, and identified three distinct modes of coiling – viscous,
gravitational and inertial – with three different scaling laws. Ribe’s results were
verified experimentally by Maleki et al. (2004). A fourth scaling law is described in
Ribe et al. (2006).

The periodic folding of a viscous sheet has also been studied (Skorobogatiy &
Mahadevan 2000; Ribe 2003). A comparison between coiling and the folding problem,
as well as between viscous coiling and the coiling of an elastic rope (Mahadevan &
Keller 1996), may be found in Ribe (2004).

We consider the novel problem of a viscous fluid thread falling onto a horizontally
translating surface (figure 1). Fluid of kinematic viscosity ν is released at volumetric
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Figure 1. Geometry of the problem. A fluid thread falls a distance H with volume flux Q
from a nozzle of internal diameter d onto a horizontal surface moving with velocity U0. The
experimental implementation uses a rubber belt wrapped around two rotating cylinders as
shown.

flow rate Q from a nozzle of diameter d , and falls a height H onto a horizontal
belt moving at speed U0. The motion of the belt breaks the rotational symmetry, and
thereby allows the thread to exhibit new and wide-ranging behaviour that includes
steady solutions, apparently chaotic behaviour, and a striking number of modes of
periodic oscillation. For much of the parameter range there are noticeable hysteretic
effects and it is also possible to see period-doubled modes of oscillation. Both the
fundamental and the period-doubled oscillations lay down regular patterns on the
moving surface, which, pursuing the imagery of ‘fluid rope-coiling’, might be described
as the stitching patterns of a ‘fluid-mechanical sewing machine’.

The paper is organized as follows. In § 2, we describe the experimental method.
In § 3, we present the experimental results, together with a regime diagram and
photographs of the regular patterns on the belt that can be produced by the periodic
oscillations of the thread. The regime diagram and photographs summarize the main
features of the patterns and their occurrence in parameter space, and further details
of the observed phenomena are described in the text.

In § 4, we derive a simple theory for a steady stretching fluid catenary, which neglects
resistance to bending, but includes viscous, gravitational, capillary and inertial forces.
The governing equations and numerical method of solution are summarized. In § 5,
we compare and find excellent agreement between predicted shapes obtained from
numerical integration and digital images from the experiments, as well as horizontal
displacement of the thread. Careful measurements are also presented for the first
stability boundary, at which the thread undergoes a bifurcation from a steady viscous
catenary either to a sideways sinusoidal oscillation or to a more episodic motion,
which we term ‘side kicks’ and describe further below. The loss of the theoretical
solution when the tension at the bottom of the catenary becomes zero compares



Fall of a viscous thread onto a moving surface 91

Added water ρQ d θ start θ end ν start ν end
Experiment (wt%) (gmin−1) (cm) (◦C) (◦C) (cm2 s−1) (cm2 s−1)

1 0 2.13 1.00 21.00 21.00 375 375
2 0 1.65 0.65 20.75 21.00 390 375
3 0 2.03 0.80 20.75 20.50 390 406
4 0 2.30 0.80 21.75 21.75 334 334
5 0 3.80 1.00 21.50 21.50 347 347
6 1.25 3.33 0.65 22.00 22.50 225 208
7 2.50 4.93 0.65 21.25 20.25 113 117
8 2.50 5.90 0.80 21.25 22.00 117 105
9 0 1.68 0.80 21.75 21.25 334 361

Table 1. Experimental parameters: ρQ is the mass flux, d the internal diameter of the steel
tube, θ the temperature, and ν the kinematic viscosity calculated from (A 1).

reasonably well with the experimentally determined stability boundary. In § 6, we
discuss the results and avenues for future investigation.

2. Experimental method
Tate & Lyle’s Golden Syrup, either pure or diluted with 1.25 or 2.50 wt% added

water, was fed from a constant-head reservoir through a steel tube of known internal
diameter d , and allowed to fall onto the horizontal upper surface of a moving rubber
belt (figure 1). The belt was wrapped around two horizontal Perspex cylinders to
form a loop and the cylinders were rotated using a variable-speed motor. To remove
fluid from the belt before it returned to the horizontal section at the top of the loop,
a rubber scraper was placed at the bottom section of the loop. The dimensions of the
apparatus are shown in figure 1.

Experiments were conducted with a given flow rate Q, tube diameter and working
fluid (table 1). In each experiment, the belt speed U0 could be varied continuously
using the motor setting over the approximate range 1–20 cm s−1. The fall height H

was varied in discrete 0.5 cm steps over the range 4.5–19 cm using an adjustable
platform. The methods for calculating the viscosity ν, density ρ and surface tension
γ are described in Appendix A.

The mass flux ρQ was measured to 1 % accuracy by weighing the fluid collected
by a container over 2 min, before and after each experiment. The belt speeds along
the boundary between steady and oscillatory flow were generally measured at the
relevant setting of the motor by timing a fixed number of revolutions with a 50
frames s−1 video camera. For the more extensive exploration of boundaries between
different oscillatory regimes, the belt speed was first calibrated against the motor
setting to obtain a quadratic fit, from which the belt speed could be inferred for other
settings. In both cases, there appeared to be small variations in belt speed during one
revolution of up to ±5 %, perhaps because of variation in the tension in different
parts of the rubber belt caused by the scraper underneath. These variations did not,
however, significantly affect the results reported below.

3. Experimental results
3.1. Overview

The primary distinction in the type of behaviour observed is between steady flow,
which is found for sufficiently large belt speeds, and a variety of oscillatory or unsteady
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Figure 2. Steady shapes in a representative experiment (experiment 1) with h = 10 cm and
U0 = 17.7, 14.1, 10.5, 7.5 cm s−1, respectively. The belt is moving from right to left in all cases.
The deflection of the thread to the right, forming a ‘heel’, for U0 = 7.5 cm s−1 is indicative of
buckling under compression, but the shape is nevertheless steady.

flows, which are found for smaller belt speeds. The boundary between steady and
oscillatory behaviour is well-defined and described further in § 5.2.

Figure 2 shows a representative progression of thread shapes in the steady regime
as the belt speed U0 is decreased at fixed fall height H towards the boundary with
oscillatory behaviour. The thread forms a steady catenary. For the larger values
of U0, the thread is being stretched throughout its length in the direction of the
belt motion, as evidenced by the thinning of the thread. Comparison with theory
is given in § 5. As U0 is decreased, the thread becomes more vertical and the total
horizontal displacement from the nozzle to the contact with the belt decreases. At the
lowest speed in figure 2 (U0 = 7.5 cm s−1), the thread bends backwards in the opposite
direction to U0 and has a ‘heel’ shape near the belt suggestive of compressional
stresses and buckling. The shape is nevertheless steady and remains in the vertical
plane defined by the belt motion and the nozzle. Such a heel shape is typical for
steady flows at belt speeds just above the boundary with unsteady behaviour.

As U0 is reduced just below this boundary, the thread begins to oscillate out of
the plane of belt motion in one of two regimes, which we term ‘meanders’ and ‘side
kicks’ and describe further in § 3.2. Typical patterns produced on the belt in these
regimes are shown in figure 3(b, c). For sufficiently small values of U0, the thread
undergoes a coiling motion, as might be expected from the behaviour of a viscous
thread falling onto a stationary surface. Combined with the translation of the belt,
the coiling motion produces a pattern on the belt of the form shown in figure 3(d).

For values of the belt speed intermediate between the slightly subcritical values
that definitely give meanders or side kicks and the near-zero values that definitely
give coiling, a variety of more complicated modes of oscillation are possible. We first
catalogue the possibilities in § 3.2 in order to develop some descriptive terminology.
In § 3.3, we then describe where the different modes occur in the parameter space
(H, U0) of a typical experiment and the sequence of transitions as U0 is varied for
different values of H . The boundary with steady behaviour and the steady shapes are
further discussed in § 5, following development of the theory in § 4.
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H = 8 cm
U0 = 4.5 cm s–1
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U0 = 3.8 cm s–1
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Figure 3. View from above of the following patterns: (a) steady, (b) sinusoidal meanders, (c)
side kicks and (d) coiling. The scale is in millimetres and the motion is from right to left.
ρQ = 1.80 g min−1, d = 8.0 mm, ν � 390 cm2 s−1. The value of ν is approximate here since the
strong lighting used to take these photographs would have heated the syrup.

3.2. Patterns and modes of oscillation

We categorize the modes of oscillation by the patterns that the thread lays down on
the belt. ‘Meanders’, ‘side kicks’ and ‘coiling’ have already been mentioned and are
shown in figure 3.

Meanders near the steady–unsteady boundary have small amplitudes and appear
to be almost a pure sine wave. As U0 is reduced, the apparently sinusoidal form
persists to amplitudes comparable with the wavelength (figure 3b) and the motion
of the overlying thread remains predominantly a simple oscillation in the direction
perpendicular to the belt motion.

Further increase in the amplitude-to-wavelength ratio, largely associated with a
decrease in wavelength, produces ‘bunched-up’ meanders (figure 4a) which deviate
markedly from sinusoidal form; the overlying thread executes a figure-of-eight
oriented perpendicular to the direction of belt motion and with the thread motion at
the extremes of the ‘8’ oriented against the direction of belt motion. A closely related
pattern is ‘braiding’ (figure 4b) in which the direction of motion is qualitatively
the same as that of bunched-up meanders, but successive loops of the pattern laid
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H = 9 cm
U0 = 2.1 cm s–1
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U0 = 2.8 cm s–1
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Figure 4. Photographs of patterns: (a) bunched-up meanders, (b) braiding, (c) slanted loops,
(d, e) figures-of-eight, (f ) the W pattern. For (a, b) ρQ = 3.05 g min−1, d = 8.0 mm, ν �
330 cm2 s−1, and for (c–f ) ρQ = 1.80 g min−1, d = 8.0 mm, ν � 390 cm2 s−1. The value of ν
is again approximate owing to the strong lighting.

down are fused on both sides. The pattern ‘slanted loops’ (figure 4c) also involves
a figure-of-eight motion of the thread, but the orientation of the ‘8’ is not in this
case perpendicular to the belt motion and varies with the belt speed. The direction
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Figure 5. Photographs of patterns characteristic of larger heights: the period-doubled oscilla-
tions (a) ‘double coils’, (b) ‘double meanders’, (c) ‘double-8’s; (d) the tight figure-of-eight
produced by alternating side kicks and (e) irregular behaviour. ρQ = 3.05 g min−1, d = 8.0 mm,
ν � 330 cm2 s−1. The value of ν is again approximate owing to the strong lighting.

in which the pattern is traced is the same as that of large-amplitude meanders and
braiding, but the pattern is fused on one side.

A ‘figure-of-eight’ pattern can also be laid down on the belt itself (figure 4d, e). The
corresponding motion of the thread is again a figure-of-eight, but now with the thread
motion at the extremes of the ‘8’ oriented in the same direction as the belt motion;
the loops of the figure-of-eight pattern on the belt are thus traced in the opposite
direction to those of braiding and slanted loops. A somewhat surprising breaking of
symmetry about the centreline is provided by W patterns (figure 4f ), which might be
thought of as either a ‘figure-of-eight’ pattern with the loops on one side missing, or
meandering with loops added on one side of the meander and not the other.

All the above patterns have regions of stability in parameter space in which, once
formed, the pattern is repeatable, regular and observable indefinitely. Variations of
some of the patterns can be formed by period-doubling bifurcations. Figure 5(a) shows
an example of ‘double-coiling’ (cf. figure 3d) in which successive coils alternate in
size and fuse in pairs. The ‘double-meander’ (figure 5b) is a meandering pattern with
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alternate large and small oscillations. Both double-coiling and double-meandering
can be observed indefinitely for some parameter values, but can also evolve over
5–20 oscillations to simple coiling and meandering, respectively, for other values.
Double-coiling is more likely to be stable.

The ‘double-8’ pattern (figure 5c) is so-called because it is laid-down in a similar
fashion to the ‘figure-of-eight’ (figure 4d, e) but with two loops on alternate sides
instead of one loop. It is much less stable and harder to find.

Finally, we return to ‘side kicks’ (figure 3c), which are episodic disturbances to an
almost steady near-vertical thread with a noticeable heel. In a single ‘kick’, the heel
buckles and collapses suddenly to one side, the thread is dragged forward with the
belt and then slowly falls back to reform the heel. The pattern on the belt is almost
straight with a kink formed by the sudden collapse of the heel. The kicks occur with
a well-defined period, but the side on which the kick occurs usually seems to follow
a random sequence. It is, however, possible for kicks to occur on alternate sides and
to form a figure-of-eight pattern with very small loops (figure 5d).

Whereas the coiling and sinusoidal meander patterns are largely the products,
respectively, of simple helical and transverse oscillations of the thread with the linear
belt motion, the other patterns require more complicated motion of the thread. Visual
impressions of the motion of different parts of the thread during oscillations and the
narrow parameter regime in which some of the patterns occur (see § 3.3) suggest that
different modes of deformation of the parts of the thread need to interact with related
time scales. We also note that when the base of the thread touches a previous part of
the pattern, it appears to have a significant effect on the oscillation, as evidenced most
clearly in the tilt of ‘slanted loops’ and the fusing of pairs of loops in ‘double-coiling’.

3.3. Regime diagram

Having catalogued the variety of possible patterns, we now attempt to describe when
they occur in a typical experiment as U0 is varied at given values of the fall height
H . There are two reasons why it is not possible to give a complete description that
includes the stability boundaries of all the different patterns. First, some of the regions
of stability in parameter space are small and, with the ±5% variation in belt speed
during a revolution and the 0.5 cm discrete steps used to vary H , it was not possible
to identify the stability boundary with sufficient precision relative to the size of the
region. Secondly, in much of the parameter space there are significant hysteresis loops,
so that a number of patterns can be stable for given values of U0 and H , and which
one is observed depends on the history of variation.

Three major stability boundaries could be determined with sufficient precision and
repeatability to be plotted on a regime diagram. These are the boundary between
steady flow and unsteady flow (meanders or side kicks), the loss of stability of
meanders as U0 is decreased, and the loss of stability of coiling as U0 is increased.
The boundary between steady and unsteady flow is not noticeably hysteretic for
small heights (e.g. H � 9 cm in experiment 3) and only slightly hysteretic (about
5%) at larger heights; hence the appearance of unsteadiness as U0 is decreased and
the disappearance of unsteadiness as U0 is increased will be considered to occur at
the same value of U0. The other two boundaries are not noticeably hysteretic for
sufficiently small heights, but are strongly hysteretic at larger heights.

The regime diagram for a typical experiment (experiment 3) is shown in figure 6,
in which, motivated by the theoretical considerations of § 4, we have used U

1/2
0 as a

parameter rather than U0. The three boundaries described above are plotted as lines
constrained by the data points shown. It can be seen that for 8.5 cm � H � 11 cm there
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Figure 6. Regime diagram for experiment 3. The three lines represent the boundary between
steady and unsteady behaviour (solid), the loss of stability of coiling as U0 increases (dashed)
and the loss of stability of meandering as U0 decreases (dotted). The symbols denote the
pattern change as the stability boundary is crossed (see key), with open symbols used for
hysteretic (irreversible) changes. The W-pattern is found at H = 11 cm over the range of U0

indicated by the arrows. The locations of the braiding, slanted loops, double-meandering and
double-coiling and large-H figure-of-eight regimes are approximate, because their stability
boundaries could not be determined with precision.

is a large hysteresis loop in which both coiling and meandering are stable. Conversely,
for 5 cm � H � 8 cm there is a region in which neither coiling nor meandering is stable
and where something else, in fact figures-of-eight, must occur.

The approximate locations of other patterns (slanted loops, braiding, the W-pattern,
side kicks, the period-doubled patterns and a second region of figures-of-eight) are also
shown, though it was not possible to determine their stability boundaries. Owing to
hysteresis, some of these patterns are obtained as U0 is varied in a particular direction:
for example, slanted loops are obtained from meandering by decreasing U0. Further
discussion of the regime diagram is best organized by considering the following height
ranges in turn: H � 7.5 cm, 8 cm � H � 10.5 cm, H ≈ 11 cm and H � 11.5 cm.

H � 7.5 cm

Hysteretic effects are not noticeable and there is either a reversible sequence
of transitions between meanders, figures-of-eight and coiling or a direct reversible
transition between meanders and coiling. (Extension of the transition curves to smaller
heights was not possible because of the minimum belt speed of 1 cm s−1.)

8 cm � H � 10.5 cm

The stability boundaries of coiling and meandering cross at about H = 8 cm. Over
the range 8.5 cm � H � 10.5 cm, there is significant hysteresis with both meandering
and coiling obtainable in the region between the circles and the squares. As U0

is increased slowly from a small value, coiling first becomes unstable (circles) to
meandering, and meandering then disappears (plus signs) to give a steady catenary.
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Figure 7. Possible stages between meandering and translated coiling, as U0 is decreased in the
range 8 cm � H � 10.5 cm. The transition (e)–(f ) occurs with time at fixed U0. The transitions
to (d) occur via an instability.

As U0 is decreased slowly, the steady catenary becomes unstable (plus signs) to
sinusoidal meanders (figure 7a), but meandering then persists to much smaller values
of U0. As the stability boundary (squares) is approached, the meanders become
increasingly bunched-up (figure 7b) owing to the decrease in belt speed, while the
amplitude and frequency of oscillation remain roughly constant. The subsequent
sequence of transitions depends on H .

For H ≈ 8 cm and 8.5 cm, the bunched-up meanders start to slant to one side
(figure 7c), become unstable and then undergo a transition to coiling (figure 7d).
For 9 � H � 10.5 cm, the bunched-up meanders persist on decrease of U0 until the
bunching causes two consecutive loops to just touch (figure 7e), which typically occurs
on one side first owing to small experimental asymmetries. As soon as touching occurs
(i.e. without further decrease of U0), the orientation of the thread’s figure-of-eight
motion starts to rotate, the overlap on the touching side increases with successive
oscillations and a slanted-loop pattern (figure 7f ) begins to form.

For H ≈ 9 cm, the slanted-loop pattern does not reach an equilibrium orientation,
but becomes unstable after some 3–10 oscillations to yield translated coiling. For
H � 9.5 cm, the slanted loops reach an equilibrium stable orientation. On further
decrease of U0, slanted loops become unstable to translated coiling (figure 7d) for
H ≈ 9.5 cm and H ≈ 10.5 cm, and to braiding for H ≈ 10 cm (figure 7d, g). Braiding
is stable and persists on further decrease in U0 almost to zero, where the loops start
to overlap; it even persists for a few oscillations when U0 is reduced to zero, before
finally undergoing a transition to coiling.

H ≈ 11 cm

For H ≈ 11 cm, there are a number of possibilities: the W-pattern, meandering
and coiling, and the period-doubled patterns double-meandering and double-coiling.
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The W-pattern is stable and occurs for belt speeds intermediate between those that
give forms of meandering and coiling. The transitions between W and coiling and
between W and meandering are hysteretic and hard to pin down. As noted earlier,
double-meandering and double-coiling can be observed indefinitely, or can evolve to
simple meandering and coiling, respectively.

11.5 cm � H � 18.5 cm

For H � 11.5 cm, the regime diagram is even harder to define because the lower
part of the thread, being thin and highly stretched, is sensitive to small perturbations.
Regular modes of oscillation become unstable as H increases and give way to irregular
modes of oscillation. We indicate only the general trend.

For H � 11.5 cm, the onset of unsteady behaviour leads to side kicks rather than
meandering. For H ≈ 11.5 cm, this onset is sufficiently repeatable to determine the
critical values of U0 (the data are plotted in figure 6), but for H � 12 cm, unsteadiness
can be triggered by small disturbances over a range of U0 and it was thus not possible
to determine the boundary between steady and unsteady behaviour.

For the larger values of U0 in the unsteady regime, the oscillations are generally
irregular, but can be thought of as an apparently random sequence of side kicks,
meanders and figures-of-eight. That is to say, the thread exhibits similar types of
motion to these regimes, but continues to switch between them instead of settling
down to a particular one. An example is shown in figure 5(e), where the pattern is
rapidly shifting, but shows characteristics of side kicks, coiling and possibly figures-
of-eight. One exception to this irregularity is a window of stability for a regular
figure-of-eight pattern near H ≈ 12 cm (figure 5d), which is distinct from the figure-
of-eight window for H < 8 cm (figure 4d, e). It is also possible to obtain the ‘double-8’
pattern in this range.

For the smaller values of U0, the tail of the thread exhibits rapid coiling. The
coiling was often irregular, with successive loops being of different sizes and the sense
of rotation changing episodically. Irregularity was particularly associated with speeds
such that there was significant overlap between successive coils. The persistence of
irregularity to large values of H can be contrasted with the case of coiling on a
stationary surface for which irregularity is observed in an intermediate range of
heights, but is stabilized again at large heights (Maleki et al. 2004).

Variation with experimental parameters

The parameters Q, d and ν were varied between experiments (table 1), though not
completely independently owing to the gravity-fed source. We regard Q and ν as the
primary parameters, since the theory of § 4 shows that changing the value of d merely
corresponds to a small offset in H .

Regime diagrams were obtained for experiments 2–8, and were all qualitatively the
same as figure 6 with regard to the relative location and transitions between different
patterns. Indeed, there was little quantitative difference between the regime diagrams
of experiments with the same fluid (hence similar values of ν), but different values
of Q. Comparison of experiments with different fluids showed that corresponding
regimes occur at smaller heights for syrups with a smaller viscosity; the heights
that give corresponding regimes for the three syrups are very roughly in the ratio
1 : 1.2 : 1.6, while the viscosities are roughly in the ratio 1 : 2 : 3.

We conclude that the regime diagram depends on ν, but not significantly on Q

over the range studied.
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4. Theory and numerical procedure for steady shapes
We now present a simple theory for the steady shape of a stretching catenary

based on the slenderness of the thread and the usual extensional-flow approximation.
Teichman & Mahadevan (2003) use similar equations to describe the time-dependent
sagging of a viscous filament between two fixed supports in the absence of inertia
and surface tension.

We include inertial, capillary and gravitational forces, in addition to the viscous
resistance to stretching, but neglect both the viscous resistance to bending and the drag
from the surrounding air. The neglect of bending resistance is a very good approxima-
tion for most of the steady flows, but precludes the buckling mechanism that gives
rise to unsteady flow at low belt speeds. Analysis of these unsteady flows requires
solution of the full set of coupled bending and stretching equations (Entov &
Yarin 1984).

Consider a slender axisymmetric thread falling in a steady arc onto a belt moving
at velocity U0. Let s be the arclength measured from the point of contact with the
belt, r the radial coordinate for the local circular cross-section of the thread, R(s)
the radius of the thread and ψ(s) the inclination of the centreline to the horizontal.
Let us and ur be the components of velocity in the directions s and r . The governing
physical parameters are the source diameter d , flow rate Q, surface tension γ , density
ρ, viscosity µ or kinematic viscosity ν, and gravity g.

The slenderness of the thread and the neglect of shear stresses due to air drag means
that the flow can be assumed to be locally uniform, i.e. us ≡ −U (s), where the minus
sign is introduced so that U > 0 for a thread falling from s > 0 towards a contact with
the belt at s = 0. From conservation of mass, we deduce that ur =(r/2) dU/ds.

The radial stress balance at the free surface r = R then gives the fluid pressure as

p = 2µ
∂ur

∂r
+

γ

R
= µ

dU

ds
+

γ

R
, (4.1)

and thus the axial stress is

σss = −p − 2µ
dU

ds
= −3µ

dU

ds
− γ

R
. (4.2)

The axial and transverse equations of motion, obtained for example by applying
Newton’s laws to an infinitesimal slice of fluid of mass ρ(πR2 ds), are

πR2ρU
dU

ds
=

dFs

ds
− πR2ρg sinψ (4.3a)

πR2ρU 2 dψ

ds
= Fs

dψ

ds
− πR2ρg cosψ, (4.3b)

where

Fs = πR2σss + 2πRγ (4.4)

is the total force acting over a cross-section.
Using the steady-state conservation of volume flux,

Q = πR2U, (4.5)

we can eliminate R in terms of U . Then, substituting (4.2), (4.4) and (4.5) into the
governing equations (4.3a, b), we obtain

dT

ds
=

g sinψ

U
, T

dψ

ds
=

g cosψ

U
, (4.6)
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where T is given by

UT = −3ν
dU

ds
− U 2 +

γ

ρ

(
πU

Q

)1/2

. (4.7)

The two equations in (4.6) are just the equations for the static equilibrium of a
catenary with tension T and weight per unit length U−1 (the cross-sectional area is
proportional to U−1 in a steady state). Hence, T will be referred to as the ‘tension’,
though it has the dimensions of velocity and is the sum of viscous, inertial and
capillary forces, with momentum flux regarded as a force.

We make the equations dimensionless using the belt speed U0 and a length scale
characteristic of viscous stretching under gravity. We thus introduce dimensionless
variables

u(ξ ) =
U (s)

U0

, ξ = s

(
g

3νU0

)1/2

, t = T

(
U0

3νg

)1/2

, (4.8)

so that (4.6) and (4.7) become

ut ′ = sinψ, utψ ′ = cos ψ, ut = −u′ − Re u2 + Γ
√

u, (4.9)

where primes denote d/dξ , and the Reynolds number Re and inverse capillary number
Γ are given by

Re =

(
U 3

0

3νg

)1/2

, Γ =
γ

ρ

(
π

3νgQ

)1/2

. (4.10)

The experimental range of Re was 10−3–10−1, with O(10−2) typical, and the range of
Γ was 0.4–0.7.

By dividing (4.9a) by (4.9b), we obtain the first integral

t(ξ ) = t0 secψ(ξ ), (4.11)

where t0 = t(0) is the dimensionless tension at the contact with the belt. We can then
write (4.9) as the coupled differential system

uψ ′ =
cos2 ψ

t0
, −u′

u
− Re u +

Γ√
u

= t0 secψ, (4.12)

for ψ(ξ ) and u(ξ ). The dimensionless horizontal displacement x and vertical
displacement z are given by solving

x ′ = cosψ, z′ = sinψ. (4.13)

Equations (4.12) and (4.13) constitute a fourth-order differential system, which we
integrate using a standard Runge–Kutta scheme with adaptive step-size. The boundary
conditions at the belt are

ψ(0) = 0, u(0) = 1, x(0) = 0, z(0) = 0. (4.14)

The dimensionless contact tension t0 is a free parameter in (4.12) whose value is
determined by shooting for the final boundary condition,

z = h ≡ H

(
g

3νU0

)1/2

at u = uh ≡ 4Q

πd2U0

, (4.15)

corresponding to the exit conditions at the nozzle, non-dimensionalized with (4.8). The
extensional-flow approximation breaks down within the O(d) distance from the nozzle
that it takes for the flow profile to adjust from no-slip to free-slip conditions. However,



102 S. Chiu-Webster and J. R. Lister

0.5 1.0 1.50

1.2
2

1

3

x, u

z

0.4

0.01
0.15

3

6

Figure 8. Numerical solutions of (4.12)–(4.14) as t0 is varied for the illustrative values
Re= 0.01 and Γ = 0.6, showing the thread shapes x(z) (solid) and velocity profiles u(z)
(dotted). The cases shown are t0 = 0.01, 0.15, 0.4, 1.2, 3, 6. The dots at the end of each curve
mark the limiting height h∗ at which u → 0.

d 	 H and this near-nozzle adjustment makes a negligible difference to the computed
solutions. We also note that the average exit velocity 4Q/πd2 ranged from 0.03 to
0.17 cm s−1, much smaller values than the range of belt speeds U0 = 1–20 cm s−1, and
so uh was typically of order 10−2 	 1.

In § 4.1 and § 4.2, we describe the general features of numerical solutions of (4.12)–
(4.14) as t0 is varied without imposing (4.15). In § 5, we re-introduce the boundary
condition (4.15) to compare the numerical and experimental results. We consider the
thread shapes in § 5.1, and compare the loss of theoretical solution as t0 → 0 to the ex-
perimentally found stability boundary between steady and unsteady behaviour in § 5.2.

4.1. Numerical solutions

In order that solutions to (4.12)–(4.14) lie in the positive quadrant x > 0, z > 0,
corresponding to a thread falling with u > 0 towards contact with the belt at the
origin, it is necessary that t0 > 0; from (4.12a), the equations become singular as
t0 → 0, and for t0 < 0 solutions in x > 0 lie in z < 0, which is unphysical. We note also
from (4.12a) that ψ ′ > 0 and hence it is not possible for this extensional-flow theory to
reproduce the backward tilting heel shapes (e.g. figure 2d) that are typically observed
over a small range of belts speeds intermediate between those that give an apparently
vertical thread and those which mark the onset of unsteadiness.

Figure 8 displays the thread shapes x(z) and velocities u(z) for a range of values of
t0 with t0 > 0. The illustrative parameter values Re =0.01 and Γ = 0.6 are typical of
the experiments, and the qualitative form of the figure would be the same for other
values. We see from figure 8 that small values of t0 give an almost vertical thread,
whereas large values of t0 give a thread that is largely being dragged sideways. For
large values of t0, the fluid accelerates monotonically from the source to the contact
with the belt at the origin, whereas for small values of t0 the thread undergoes a small
region of deceleration as it approaches the belt.



Fall of a viscous thread onto a moving surface 103

2 4 8 100

1

2

3

6
t0

h*

l*/h*

l*

Figure 9. The limiting height h∗ and horizontal displacement l∗ at which u =0 as t0
is varied for Re= 0.01 and Γ = 0.6. The ratio l∗/h∗ is also shown.

An important feature of figure 8 is that all solutions terminate at some finite limit
point where u → 0 (hence R → ∞) and ψ → π/2 (a vertical thread). It can be shown
(see Appendix B) that the asymptotic behaviour near this limit is given by

u
[
(8 + Γ 2)1/2 + Γ

]2 ∼ 4(ξ ∗ − ξ )2, (4.16)

where ξ ∗ is the dimensionless arclength at the limit point. We denote the corresponding
limiting height and horizontal displacement by h∗ = z(ξ ∗) and l∗ = x(ξ ∗), respectively.

Figure 9 shows the variation of the limiting values h∗(t0), l
∗(t0) and l∗(t0)/h∗(t0) with

t0. We observe first that the limiting height h∗ is a monotonically decreasing function
of t0. The actual dimensionless fall height h is given by the boundary condition
(4.15). Since Q 	 πd2U0/4, we note that uh 	 1 and hence h ≈ h∗. This suggests
that h is also a monotonically decreasing function of t0, and this has been verified
numerically. Hence there is a unique solution for t0 given the boundary condition
(4.15). It also follows from (4.15) that increasing t0 and thus decreasing h corresponds,
if the dimensional fall height H is fixed, to increasing the belt speed U0. (The explicit
dependence of (4.15) on U0 is much stronger than any implicit dependence through
the variation of h with Re.) We observe secondly from figure 9 that, though the
limiting horizontal displacement l∗ has a maximum at t0 ≈ 1.2, the ratio l∗/h∗ is a
monotonically increasing function of t0. Thus, when the results are redimensionalized
to a fixed fall height H , the dimensional horizontal displacement L is a monotonically
increasing function of t0 and hence of U0, as expected.

4.2. Loss of solution as t0 → 0

We have already noted the constraint t0 > 0. From figures 8 and 9, we can now also
say that the limit t0 → 0 gives a (nearly) vertical thread and the maximum value of
h∗, which we denote by h∗

m(Γ, Re). The limit t0 → 0 also gives the maximum value of
the dimensionless fall height h. From (4.15), we deduce that, in dimensional terms
for fixed H , this corresponds to a minimum value of U0: there is no solution to
the steady extensional-flow model for smaller values of U0. In § 5.2, we compare this
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Experiment Γ h∗
v(Γ, 0) H0 α A

(cm) (cm s)−1/2

2 0.655 3.48 0.463 0.266 0.220
3 0.579 3.29 0.415 0.275 0.242
4 0.594 3.33 0.407 0.297 0.255
5 0.453 3.01 0.406 0.322 0.279
6 0.614 3.38 0.491 0.364 0.326
7 0.694 3.58 0.450 0.472 0.377
8 0.646 3.45 0.386 0.497 0.397

Table 2. The main parameters in the theoretical prediction U
1/2
0 = α(H + H0) for loss of an

extensional solution, see (4.19), and the experimental best fit of the form U
1/2
0 = A(H +H0) for

the onset of unsteadiness.

loss of solution as t0 → 0 to the experimental boundary between steady and unsteady
behaviour.

As t0 → 0, equation (4.12a) becomes singular and thus the change in ψ from the
boundary value ψ(0) = 0 to the interior value ψ ∼ π/2 occurs in a thin boundary
layer of width O(t0). In the boundary layer, u′ and t ′ are O(1), and so t remains O(t0)
and u ∼ u(0) = 1. Equation (4.12a) is thus solved to give ψ ∼ tan−1(ξ/t0). The thread
is therefore vertical outside the boundary layer and the vertical displacement z has
(almost) the same value as the arclength ξ . The solution outside the boundary layer
is most easily derived by returning to (4.9) with ψ = π/2 to obtain

ut ′ = 1 where t = −u′

u
− Re u +

Γ√
u

. (4.17)

Matching to the boundary layer gives boundary conditions u(0) ∼ 1 and t(0) ∼ 0.
As in the full equations (4.9), all solutions of (4.17) (with u > 0 and t � 0) terminate

at some finite height where u → 0 in the manner described by (4.16) (see Appendix B).
The limiting height for the boundary conditions u(0) = 1 and t(0) = 0 is, of course,
equal to the value h∗

m(Γ, Re) obtained from h∗ as t0 → 0.
Since uh 	 1, we can derive a very good approximation for the belt speed at which

there is a loss of solution by substituting the boundary condition u = uh at ξ = h into
(4.16) to obtain

h∗
m = h +

u
1/2
h

2

[
(8 + Γ 2)1/2 + Γ

]
. (4.18)

On redimensionalizing this result with (4.15), we obtain

U
1/2
0 = α(H + H0) where α =

(
g

3νh∗2
m

)1/2

, H0 =

(
3νQ

πd2g

[
(8 + Γ 2)1/2 + Γ

])1/2

.

(4.19)

The coefficient α depends on U0 through the dependence of h∗
m on Re, but only very

weakly when Re 	 1. The values of these parameters for Re = 0 are shown in table 2.

5. Comparison of theory and experiment
Images of the catenary shapes formed by the thread in the steady regime were

obtained by processing stills from a digital movie of the experiments (cf. figure 2).
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Figure 10. Calculated thread shapes (solid curves) and pixelated images of experiment 1.
Here H = 6.05 cm and U0 = 4.66, 8.3 and 14.5 cm s−1, respectively from left to right.

Since the small (< 5 %) variations in belt speed during one revolution of the belt
caused slight oscillations of the shape, we chose the movie frame nearest the middle
of the oscillation, this corresponding most closely to the measured average belt speed.
Image-processing software was then used to separate the yellow Golden Syrup from
the darker background and thence to produce a pixelated image of the thread. Lighting
effects prevented the edges of the thread being measured with sufficient precision to
enable comparison of the thread thickness with theory. However, the edges in the
pixelated image do give a reliable indication of the centreline of the thread for
comparison with the theoretical shapes. The scale of the image was determined from
a ruler in the field of view, and the origin of the image was fixed by the midpoint
of the bottom of the nozzle. This scale and origin were used to resize and align the
image against the theoretical predictions of the thread centreline. These predictions
were obtained with the numerical method described in § 4.

5.1. Shape of catenary

We compared the numerically predicted and experimentally observed shapes over a
range of heights, belt speeds and tube diameters. Figure 10 is a typical comparison,
which displays shapes from experiment 1 at a fixed fall height H = 6 cm for three
different belt speeds U0. The three theoretical curves contact the belt at the origin,
and the three pixelated images have been scaled and shifted to match the top of the
thread in the manner described above. The curves obtained numerically show good
agreement with experiment, and similar agreement was found in all cases where the
belt speed is sufficiently large to pull the thread away from vertical; as noted earlier,
the theoretical model is unable to match the heel shapes produced at low speeds when
the thread is near vertical.

In figure 11, we compare the theoretical prediction with the measured horizontal
displacement of the thread as U0 was varied at a fixed fall height H = 7 cm in
experiment 9. The contact point between the belt and the thread was most easily
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Figure 11. Horizontal displacement L for H = 7 cm in experiment 9 (dots), with the theoretical
predictions for viscosities corresponding to 21.25 ◦C (solid) and 21.75 ◦C (dashed). The
discrepancy at low belt speeds cannot be explained by uncertainty in the viscosity and is
largely accounted for by the neglected bending stresses.

identified by eye, and the horizontal displacement was measured using a ruler mounted
just above the belt for this purpose. The theoretical predictions depend on the fluid
viscosity, and the dashed and solid lines correspond to the viscosity at the temperatures
measured at the beginning and end of the experiment, respectively.

The agreement between theory and experiment is quite good, particularly at the
larger belt speeds and if the larger viscosity (lower temperature) is assumed. We note,
however, that the theory curves consistently predict smaller horizontal displacements
than observed and that the discrepancy is particularly marked for displacements less
than about 2 cm (belt speeds less than about 5 cm s−1). As discussed in § 6, we do not
believe that this discrepancy should be explained simply as an under-estimate of the
viscosity.

5.2. Loss of steady solution and onset of unsteadiness

Figure 6 showed that the boundary between steady and unsteady behaviour in
experiment 3 was approximately of the form U

1/2
0 ∝ H . Figure 12 shows more detailed

experimental data for this boundary from experiments 5 and 7, including error bars
marking repeatable observations of clear steady and oscillatory behaviour on either
side of the transition. These plots are typical of the results from all the experiments
(2–8) in which such measurements were made. In all cases, the steady–unsteady
boundary is approximately linear in H and U

1/2
0 , particularly if the lowest point or

two is omitted.
A partial understanding of this result can be obtained by comparison with (4.19).

Since Re was typically of order 10−2, we can replace h∗
m(Γ, Re) by h∗

m(Γ, 0) to a
very good approximation. Moreover, Γ depends only on parameters held constant
in each experiment and not on the belt speed U0. Therefore, for a given experiment,
H0 is constant and α is approximately constant, and thus (4.19) gives another linear
relationship between H and U

1/2
0 , in this case for the loss of a steady extensional
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Figure 12. The belt speed U0 (cm s−1) at the steady–unsteady boundary as a function of
height H for (a) experiment 5 and (b) experiment 7. The linear fits are constrained to have
the intercept given by that of (4.19).

solution. The values of the gradient α (table 2) can be found by a single numerical
integration of (4.17) with Re = 0 for each experiment.

To compare the loss of theoretical solution with the experimental boundary between
steady and unsteady behaviour, we fitted the experimental data with straight lines
of the form U

1/2
0 = A(H + H0), where the offset H0 from (4.19) is imposed and the

gradient A is chosen to give the best fit. Figure 12 shows these straight-line fits for
experiments 5 and 7. (The value of H0 in each experiment is typically only a few
millimetres (see table 2). Nevertheless, it is a very good approximation to H ∗ − H for
all steady solutions and it seems sensible to impose this offset, even though it does
not make much difference to the fit.)

Figure 13 compares the fitted experimental gradients A with the theoretical gra-
dients α of (4.19). Viscosity causes the main variation in α, with the tube diameter
d having a smaller effect through its effect on Q and hence Γ . The figure shows a
strong linear correlation between the two gradients, but the experimental gradients
are consistently only about 85 % of the theoretical gradients. This discrepancy is not
due to the neglect of inertia: while the relationship (4.19) is slightly nonlinear for
Re > 0, the effect on the average gradient is only about 2 % in the parameter regime
of interest. We believe the discrepancy is primarily due to bending stresses starting to
play a significant role when the belt speed becomes sufficiently small for the lowest
part of the thread to be in compression. In support of this view, we note that the
thread is observed to have a backward tilting heel over most of the range of belt
speeds between the loss of an extensional solution and the onset of unsteadiness.

6. Discussion
In this paper, we have presented a first experimental investigation of the behaviour

of a viscous fluid thread falling onto a steadily translating horizontal surface or belt.
A surprising variety of behaviours has been uncovered, ranging from steady stretching
flow at high belt speeds, through a complex set of oscillatory regimes at intermediate
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Figure 13. Comparison of the gradients A and α in the best fits of the form U
1/2
0 = A(H +H0)

for the onset of unsteadiness in experiments 2–8 and the corresponding theoretical predictions

U
1/2
0 =α(H + H0) for loss of an extensional solution (see (4.19)). The numerical values of A

and α are given in table 2. The fitted line is A =0.834α.

speeds, to steady coiling at low or zero speeds. The main limitations on the quantitative
accuracy of the results are probably due to the small (<5 %) variations in belt speed
during a revolution of the belt and to the sensitivity of the viscosity of Golden Syrup
to small variations of temperature. The variation of belt speed, in particular, prevented
a definitive delineation of all the stability boundaries between the different modes of
oscillation, but we do not believe that it affected either the qualitative observations of
the different modes or the structure of the regime diagram. Future, better engineered
experiments could quantify the frequency and shape of the oscillations, as well as the
stability boundaries of the more unusual modes of oscillation.

We have also presented a simple theory based on extensional flow of a slender
thread for the steady shapes produced by high belt speeds. This gives good agreement
with both the experimentally observed shapes and the horizontal displacements when
the belt speed is sufficiently large to pull the thread away from vertical. In this
situation, the thread is in tension throughout its length, bending stresses are only
a small perturbation and the shape is that of a catenary of non-uniform mass per
unit length. An important feature of the theory is the loss of solution if the belt
speed is reduced below a critical value, corresponding to the lowest part of the thread
entering into compression. Near this critical value, the thread is nearly vertical,
bending stresses are very significant where the thread turns through 90◦ close to the
belt, and a ‘heel’ shape is observed experimentally. We also note that bending stresses
are generally more important at small fall heights and large flow rates because the
thread is then thicker. In calculations to be reported elsewhere, we show that a more
complicated theory incorporating the bending stresses is capable of predicting the
heel shape and giving good agreement with the horizontal displacement, even for near
vertical threads. We also found that the experimental onset of unsteadiness is closely
correlated to the loss of the extensional-flow solution, though it consistently occurs at
a lower speed. This is presumably due to the need for a certain length of the thread
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to be in compression if the bending stiffness is to be overcome and buckling to ensue.
The loss of solution thus provides an upper bound for the onset of unsteadiness.

The main observation lacking a theoretical explanation is the variety of oscillatory
patterns. Some qualitative understanding is provided by noting that many of the
patterns on the belt are produced by sideways, circular and figure-of-eight oscillations
of the thread, which can be thought of as Lissajous figures with frequency ratios
(lateral motion:longitudinal motion) of 1:0, 1:1 and 1:2. Among the 1:2 modes, it
should be noted that the figure-of-eight pattern has the opposite phase relationship to
meandering and braiding, that the W pattern has a markedly broken symmetry, and
that the slanted-loop pattern is rotated relative to the belt motion. The occurrence
of some of these patterns in fairly wide regions of parameter space suggests that
the frequency-2 component of motion may be a simple consequence of nonlinearity,
though the phase relationships and the symmetry breaking still lack an explanation.
The W, double-8 and double-meander patterns occur over a narrow range of heights,
which suggests that these modes may be related to some sort of resonance between
different inertial oscillations of the thread. Indeed, we note that the range of heights
over which there is well-defined hysteretic behaviour (8–11 cm in figure 6) is very
similar to the inertio-gravity regime identified by Ribe et al. (2006) in which there are
multiple solutions for the coiling frequency on a stationary surface. Finally, we note
again the evidence provided by the tilting of ‘slanted loops’ and the fusion in ‘double-
coiling’ for the importance of perturbations to the thread caused by intersection with
the laid-down pattern. It is not clear how the moving contact-point conditions of
Skorobogatiy & Mahadevan (2000) and Ribe (2004) should be generalized to include
such effects.

It has taken over forty years to disentangle the different dynamical regimes of the
relatively simple phenomenon of ‘fluid rope-coiling’. We hope that recent advances
in experimental, numerical and theoretical techniques will allow for a speedier
understanding of the stitching patterns of the ‘fluid-mechanical sewing machine’.

We are very grateful to Keith Moffatt and Jae-Tack Jeong for the inspiration
provided by their preliminary investigations of this problem, and to Neil Ribe for
many interesting discussions. S.C. was supported by a summer research studentship
from Trinity College, Cambridge. J.R.L. acknowledges generous hospitality from the
Institut de Physique du Globe, Paris during the writing of this paper.

Appendix A. Fluid parameters
The viscosity of Golden Syrup varies quite strongly with temperature, with a

1 ◦C change in temperature producing about a 20 % change in viscosity. The room
temperature θ was recorded both before and after each experiment to the nearest
0.25 ◦C, and the syrup temperature was taken to be the same as the room temperature.
The inverse exponential relationship found in both Davaille & Jaupart (1993) and
White (1988) was then used to calculate the viscosity ν from the temperature θ in ◦C:

ν = ν0 exp

(
1

Aθ2 + Bθ + C

)
, (A 1)

with

ν0 = 3.33 × 10−7 cm2 s−1, (A 2)

A = −7.5907 × 10−7, B = 3.8968 × 10−4, C = 4.0130 × 10−2. (A 3)
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The values of the coefficients A, B and C were taken directly from Davaille &
Jaupart (1993), while ν0 was inferred from a viscosity measurement at known tempera-
ture with a falling ball viscometer. (Use of the values of A, B and C from White (1988)
instead of those from Davaille & Jaupart (1993) with the corresponding inferred value
of ν0 gave a negligible difference over the narrow working range 20.5–22.5 ◦C.) The
values of A, B and C in (A 3) were also used to calculate the viscosity of diluted syrup,
with ν0 = 2.33 × 10−7 cm2 s−1 for 1.25 wt% added water and ν0 = 1.08 × 10−7 cm2 s−1

for 2.50 wt% added water as inferred from a viscosity measurement obtained with a
U-tube viscometer. (It was checked that the use of the values of A, B and C reported
for 10 wt% water in Davaille & Jaupart (1993) again gave a negligible difference over
the narrow working temperature range.)

The density of the Golden Syrup was measured to be 1.438 ± 0.002 g cm−3, in
agreement with the value reported by Davaille & Jaupart (1993), and the density of
syrup diluted with water was calculated by assuming linear mixing.

The CRC Handbook of Chemistry and Physics (Weast 1984) lists surface tensions
for sucrose solutions of concentration 0–55 wt%. An approximate extrapolation to
the 82.5–83.0 % sucrose concentration of Golden Syrup (C. Knolls, Tate & Lyle
plc, personal communication) gives a surface tension of about 78 dyn cm−1, in good
agreement with the value of 80 dyn cm−1 (±10 %) reported by Llewellin, Mader &
Wilson (2002). A surface tension value of 78 dyn cm−1 was also used for syrup with
1.25 and 2.50 wt% added water, since the change in sucrose concentration is too small
to make a significant difference. Neither surface tension nor density is expected to
vary significantly over the temperature range of the experiments.

Appendix B. Asymptotic solution near the nozzle
Consider solutions of (4.12) with u > 0, t0 > 0 and 0 � ψ < π/2 corresponding to

a thread falling in the positive quadrant towards the origin. We note from (4.12b)
that u(ξ ) is bounded above since u′ < 0 if u > (Γ/t0)

2. From (4.12a) we see that ψ(ξ )
increases monotonically and, since u is bounded, ψ → π/2. We set ψ = π/2 − ψ and
rewrite (4.11) and (4.12) as

t =
t0

sinψ
= −u′

u
− Re u +

Γ

u1/2
, ut ′ = cos ψ. (B 1)

We deduce from (B 1a) that t → ∞ and u → 0 as ψ → 0. In this limit,

u′

u
− Γ

u1/2
+ t = O(Re u), ut ′ = 1 + O((t0/t)2). (B 2)

A leading-order balance of terms in (B 2) gives u ∼ (ξ ∗ − ξ )2, t ∼ (ξ ∗ − ξ )−1 and
ψ ∼ t0(ξ

∗ − ξ ) as ξ → ξ ∗, where ξ ∗ is the finite arclength at which the limit ψ → 0 is
attained. More detailed analysis shows that

u = 4(ξ ∗ − ξ )2/C2 + O
(
t2
0 (ξ

∗ − ξ )4, Re(ξ ∗ − ξ )5, (ξ ∗ − ξ )4+Γ C/4
)
, (B 3)

where C =Γ +(Γ 2+8)1/2. The first two correction terms in (B 3) are forced directly by
the correction terms in (B 2); the third correction term (with exponent dependent on
Γ ) is an eigenmode of the linearization of (B 2) about the leading-order solution, and
occurs with a magnitude determined by the boundary conditions. Similar expansions
are readily derived for t and ψ .

For the case of a vertical thread, we can perform a similar analysis of (4.17). If
u(0) > 0 and t(0) � 0, then u is bounded above, t increases monotonically to ∞ and
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u → 0. The limiting behaviour is given by (B 2) with t0 = 0. Thus (B 3) also applies,
but without the first correction term, as could also have been derived by considering
the limit t0 → 0. Since (h∗ − h)2 and Re were both typically of order 10−2, we note in
particular that (B 3) is an excellent approximation for ξ = h in the limit t0 → 0, i.e. for
ξ = hm, confirming the validity of (4.18).
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